If it's not what You are looking for type in the equation solver your own equation and let us solve it.
28u^2-63=0
a = 28; b = 0; c = -63;
Δ = b2-4ac
Δ = 02-4·28·(-63)
Δ = 7056
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{7056}=84$$u_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-84}{2*28}=\frac{-84}{56} =-1+1/2 $$u_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+84}{2*28}=\frac{84}{56} =1+1/2 $
| 2r^2=-14 | | 33/n-1=2 | | 7p^2=-77 | | 2x^2+78=34 | | f(4)=15-3 | | 14/n+13=20 | | H=-1.6t^2+2 | | -2(3y+10)=40 | | (X+7.5)=2x+2(x+7.5) | | 5(2w+3)=45 | | 7m-3=5m+1 | | 4x^2-48x+92=0 | | 5x–200=400 | | g^2+69=-18 | | h+13=−13 | | 10x–12=18 | | f^2=55 | | q^2+38=0 | | -2(3x-4)=-6x-3 | | (5x^2+32)=(7x^2) | | k^2–10k+9=0 | | 49=-5n=2n | | k2–10k+9=0 | | 3(x-)+2x=22 | | -8x^2+24x-16=0 | | d^2+57=-32 | | 4x10=26 | | 9m+(-3)(m+6)=2(m+1) | | (3/x+4)-(2/x-4)=3x/x2-16 | | y^2-87=0 | | 13(m-1)=-13 | | 10-6b+12=4b-10b |